If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.1t^2-10t-62.5=0
a = 0.1; b = -10; c = -62.5;
Δ = b2-4ac
Δ = -102-4·0.1·(-62.5)
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-5\sqrt{5}}{2*0.1}=\frac{10-5\sqrt{5}}{0.2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+5\sqrt{5}}{2*0.1}=\frac{10+5\sqrt{5}}{0.2} $
| -2x-7x=-216 | | (3x+15)=(x+45) | | 6y+6y+6y=360 | | (3x+3)=54 | | (3x+3)+54=180 | | (2x+17)=(2x+5) | | (2x+17)+(2x+5)=180 | | (x-18)+(6x+2)=180 | | 14.5-7w=3.3 | | 2r+6r=8r | | (9x+9)+(10x-4)=180 | | (x+5)=(3x+7) | | (5x+5)+(3x+15)=180 | | (7x+22)+(8x+8)=180 | | 7^(x-4)=49 | | -14x-1=-15 | | 30+2q=13q-0.2q^2 | | 5n^2=200 | | 0.2q^2+11q-30=0 | | x-4/x-2/5=2/x | | 4(c+2)=32 | | 4(c+2=20 | | -1/4-5/6t=19/24 | | (10=w)-9=-243 | | 7x+23=78 | | 5x+2=16+2x | | 5x-3=2-2x | | 8x+4-6x=8-4x+12+6x | | 17(r+12)=-374 | | 12-5x=2x+33 | | 3(2x+10)=3(2x-10) | | X-130=40-7x |